
 1

FleetPC-7
User Manual

 2

Copyright

All Rights Reserved.

Manual’s first edition:
For the purpose of improving reliability, design and function, the

information in this document is subject to change without prior notice and
does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to use
the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this Manual may be r eproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

 3

Table of Contents

Chapter 1 System Introduction ..5
1.1 Specifications ... 5
1.2 Packing List ... 6
1.3 Features .. 6
1.4 System Dissection .. 7

Chapter 2 Procedures of Assembly/Disassembly .. 10
2.1 2.5”HDD Installation ... 10
2.2 CF Card Installation ... 14
2.3 SIM Card Installation ... 17
2.4 Antenna Installation ... 19

Board Guide ...21
Chapter 1 Introduction ...21

1.1 Specifications ... 21
1.2 Package Contents ... 22
1.3 Block Diagram ... 22

Chapter 2 H/W Information ...23
2.1 Mainboard illustration(Top Side)……………………………………………….23
2.2 Locations of IO ports & Jumper settings definition...24

Chapter 3 BIOS Settings ..33
3.1 Main Setup ... 33
3.2 Advanced Chipset Setup .. 35
3.3 Superio Setup ... 39
3.4 Security Setup .. 41
3.5 Boot setup .. 42
3.6 Exit Setup ... 43

Chapter 4 Function Description ...47
4.1 DC Power input connection ... 47
4.2 Digital Inputs ... 47
4.3 Digital Outputs ... 48
4.4 Watchdog Timer ... 49
4.5 RS-232 Ports .. 49
4.6 Serial ATA (SATA) ... 51
4.7 USB .. 51

Chapter 5 Driver And Utility Installation ..52
5.1 Introduction to Driver CD Interface .. 52

 4

5.2 Windows 7 32 / 64 bit Driver Installation .. 64
Chapter 6 Software Installation and Programming Guide… …………………………70

6.1 CAN bus... 70
6.2 GPIO and Watchdog .. 72
6.3 Power Subsystem ... 73
6.4 I-Button Function ... 73
6.5 API List and Descriptions ………………………………………………………74

6.5.1 CAN Bus ... 74
6.5.2 GPIO and Watchdog ... 81
6.5.3 Power Subsystem .. 82
6.5.4 I-Button ... 89

Appendix A…………………………………………………………………………….. ..90

 5

Chapter 1 System Introduction

FleetPC-7 Series with Intel second generation Celeron and Core i5/ i7
processor is a multi-function In-Vehicle computer, which is suitable for using in all
kind of applications. Besides basic I/O ports like VGA, LVDS, HDMI, DVI, Hybrid
Multiple Display, USB, COM. LAN, and GPIO, FleetPC-7 has complete
wireless solutions for GPS / 3.5G / WiFi / Bluetooth selection, Video capture,
Swappable 2.5” HDD, DC output, Driver ID, and embedded CAN Bus function to
allow micro-controllers and devices to communicate with each other in vehicle. In
addition, FleetPC-7 has intelligent power management function with software
utility to monitor power status and control power sequence, and also compliant
with most industry standards for in-vehicle usage including CE, FCC, and E-Mark.

1.1 Specifications
 Support Intel Celeron and Core i5/i7 CPU + HM65 chipset
 DDR3 SO-DIMM * 2, up to 8GB memory
 Display --- VGA + HDMI + DVI
 Combo connector --- VGA + Audio + USB + DC power
 SATA x 2 & SATA power x 2
 Swappable Anti-Shock 2.5” HDD bay x 1
 Intel GbE chip LAN x 2
 COM x 3 (2 x connector & 1 x pin header)
 CF type II socket x 1 / SIM slot x 1
 Audio connector (MIC & Line-out)
 Mini PCIe socket x 2 (Capable for WiFi / 3.5G)
 Flexible GPIO ports (8) & CAN bus
 Driver ID (Use I-Button) can certified driver,
 9 ~ 32V DC input & customer define power management mode for ODM
 12V DC 20W output connector for monitor

 6

1.2 Packing List
Check if the following items are included in the package.

FleetPC-7 x 1
User Guide & System Driver CD x 1
Screw pack(2.5”HDD bracket: 4pcs) x 1
Terminal block female 3pin x 1
Spare Fuse 10A x 1
SATA & SATA power cable x 1
Remote Switch Cable x 1
GPIO/CAN/Driver ID DB15 Connector x 1

1.3 Features
 Rugged fanless design
 Support Intel Celeron and Core i5/i7 CPU + HM65 chipset
 2 * DDR3 SO-DIMM, up to 8GB
 Support CAN 2.0A/2.0B protocol and I-Button for driver ID
 VGA/HDMI/ DVI-I output
 Variety Wireless Communication
 Combo connector to simplify touch monitor installation

 7

1.4 System Dissection

1.4.1 Dimensions

 8

1.4.2 I/O Panel

FRONT IO & PRINT

Rear I/O & PRINT

 9

 1.4.3 System Configuration

Item Description Quantity

1 DDR3 module 1

2 GPS & Bluetooth module 1

3 AR-V6100 main board 1

4 Module Heat-Spreader 1

5 Sim card connector 1

6 Wi-Fi & 3.5G module 1

7 CF Bracket 1

8 HDD Bracket 1

1

2

3

4

5

6

7

8

 10

Chapter 2 Procedures of

Assembly/Disassembly

2.1 2.5”HDD Installation
The following instructions will guide you to install HDD step-by-step.

2.1.1 Unfasten the screw of chassis.

UNSCREW

 11

2.1.2 Open the bracket.

2.1.3 Assemble HDD into bracket by fastening 4 screws.

 12

 13

2.1.4 Assemble the HDD bracket back to system.

Finish.

SCREW

 14

2.2 CF Card Installation
2.2.1 Unfasten the 2 screws and pull the CF bracket from I/O

panel.

 15

2.2.2 Assemble the CF card with CF bracket.

The direction for
installing the CF card

 16

Finish.

 17

2.3 SIM Card Installation
2.3.1 Unfasten the 3 screws from Rear I/O panel.

2.3.2 Insert sim card.
Step1.

 18

Step2.

Finish.

 19

2.4 Antenna Installation

Tack out antenna from packing bag and install.

 20

Board Guide

 21

Chapter 1 Introduction
FleetPC-7 Series with Intel second generation Celeron and Core i5 / i7 processor
is a multi-function In-Vehicle computer, which is suitable for using in all kind of
applications. Besides basic I/O ports like VGA, LVDS, HDMI, DVI, Hybrid Multiple
Display, USB, COM. LAN, and GPIO, FleetPC-7 has complete wireless
solutions for GPS / 3.5G / WiFi / Bluetooth selection, Video capture, Swappable
2.5” HDD, DC output, Driver ID, and embedded CAN Bus function to allow
micro-controllers and devices to communicate with each other in vehicle. In
addition, AR-B6100 has intelligent power management function with software
utility to monitor power status and control power sequence, and also compliant
with most industry standards for in-vehicle usage including CE, FCC, and E-Mark.

1.1 Specifications

 Support Intel Celeron and Core i5/i7 CPU + HM65 chipset
 DDR3 SO-DIMM * 2, up to 8GB memory
 Display --- VGA + HDMI + DVI
 Combo connector --- VGA + Audio + USB + DC power
 SATA x 2 & SATA power x 2
 Swappable Anti-Shock 2.5” HDD bay x 1
 Intel GbE chip LAN x 2
 COM x 3 (2 x connector & 1 x pin header)
 CF type II socket x 1 / SIM slot x 1
 Audio connector (MIC & Line-out)
 Mini PCIe socket x 2 (Capable for WiFi / 3.5G)
 Flexible GPIO ports (8) & CAN bus
 Driver ID (Use I-Button) can certified driver,
 9 ~ 32V DC input & customer define power management mode for ODM
 12V DC 20W output connector for monitor

 22

1.2 Package Contents
 Check if the following items are included in the package.
 Quick Manual
 AR-B6100 board
 1 x Software Utility CD

1.3 Block Diagram

 23

Chapter 2 H/W Information
This chapter describes the installation of AR-B6100. At first, it shows the

Function diagram and the layout of AR-B6100. It then describes the unpacking
information which you should read carefully, as well as the jumper/switch
settings for the AR-B6100 configuration.

2.1 Mainboard illustration(Top Side)

MINIPCIE1
Mini PCI-Express Slot1 rPGA988B CPU Socket

MINIPCIE2
Mini PCI-Express Slot2

DIMM1
204-Pin DDR3 Socket

 Intel HM65 PCH
DIMM2
204-Pin DDR3 Socket

RTC1
System RTC battery socket

 24

2.2 Locations of IO ports & Jumper settings definition
TOP SIDE

 25

Bottom SIDE

 26

COM3

Pin Header for COM3 use RS-232
function

CN2
RJ45 & USB 2 ports (USB2,USB3)
Connector

SIM1
For SIM Card Use.

FP_USB1

Internal USB4 connector
DVI1
DVI-D Connector.

LPC1
LPC BUS Signal Header for Port-80
Debug Tools.

FP_USB2

Internal USB5 connector
HDMI1
HDMI Connector

CF1
CF CARD SOCKET

SPI1

For BIOS Firmware Update
FUSE1
FUSE Connector.

SATA_PWR1

SATA Power Connector1.
PWR1

3 Pin External Power Input.

SATA_PWR2

SATA Power Connector2.
LED2
3 in 1 LED for Power ,HDD ,Status
LED

COMBO1
COMBO Connector , Include Analog
VGA , USB , Audio Signal.

SW4

For RS-422,RS-485 function select

GPIO1
GPIO Connector , Include GPIO ,
CANBUS , I-Buttom Signal.

SW3

For RS-422,RS-485 function select

COM2_485

Pin Header for COM2 use RS-422/485

function .

SW2
For RS-422,RS-485 function select .

COM2
Pin Header for COM2 use RS-232
function

SATA2
SATA device connector #2.

COM1
Pin Header for COM1 use RS-232
function .

SATA1

SATA device connector #1.

AUDIO1
AUDIO connector.

BT1

For Bluetooth Modular Connector.

CN1
RJ45 & USB 2 ports (USB0,USB1)
Connector

GPS1

For GPS Modular Connector

 27

2.2.1 Connectors and Jumper Settings

1. COM3 (For RS-232 Function) 2. FP_USB1 Connector

Pin SIGNAL

1 DSR

2 DCD

3 RTS

4 SIN

5 CTS

6 SOUT

7 RI

8 DTR

9 NC

10 GND

3. FP_USB2 Connector 4. SPI1 (For BIOS FW Update)

Used BIOS Firmware Update Tools.

5. SATA_PWR1 6. SATA_PWR2

SATA_PWR1

SATA Device Power Connector

PIN SIGNAL

1 +12V

2 GND

3 VCC3

4 VCC5

SATA_PWR2

SATA Device Power Connector

PIN SIGNAL

1 +12V

2 GND

3 VCC3

4 VCC5

 28

7. COMBO1 (COMBO Connector) 8. GPIO1 (GPIO Connector)

PIN SIGNAL PIN SIGNAL

1 USB+ 11 DDCCL

2 USB- 12 VCC12

3 GND 13 GND

4 VCC5 14 Audo_R

5 GND 15 GND

6 RED 16 NC

7 Green 17 Audo_L

8 Blue 18 NC

9 HSYNC 19 NC

10 VSYNC 20 DDCDA

GPIO Piin Define:
PIN SIGNAL PIN SIGNAL

1 GPO0 2 GPO1

3 GPO2 4 GPO3

5 GND 6 GND

7 CAN_H 8 CAN_L

9 GND 10 I-Button

11 GPI4 12 GPI5

13 GPI6 14 GPI7

15 VCC12A

9. COM2_485 (For RS-422,RS-485 Function) 10. COM2 (For RS-232 Function)

COM2_485: For RS-422,RS-485

Function

Pin SIGNAL

1 NA

2 485_422_TX2+

3 NA

4 485_422_TX2-

5 422_RX2-

6 NA

7 422_RX2+

8 NA

9 422_485_SEL_L

10 GND

COM2: For RS-232 Function

Pin SIGNAL

1 DSR

2 DCD

3 RTS

4 SIN

5 CTS

6 SOUT

7 RI

8 DTR

9 NC

10 GND

 29

11. COM1(For RS-232 Function) 12. AUDIO1 (For Audio IN/Out & Remote
Control)

COM1: For RS-232 Function

Pin SIGNAL

1 DSR

2 DCD

3 RTS

4 SIN

5 CTS

6 SOUT

7 RI

8 DTR

9 NC

10 GND

Audio Jack

BLUE : Remote

Green: Front Out

Pink: Mic in.

13, 14. CN1,CN2 (RJ45 x1& USB Port x2) 15. DVI1 (DVI-D Connector)

RJ45 Ethernet Connector with 2

ports of External USB Connector

PIN SIGNAL PIN SIGNAL

1 DATA2- 2 DATA2+

3 GND 4 NC

5 NC 6 DDC CLK

7 DDC Data 8 NC

9 DATA1- 10 DATA1+

11 GND 12 NC

13 NC 14 +5V

15 GND 16 HPD

17 DATA0- 18 DATA0+

19 GND 20 NC

21

NC 22 GND

23 CLK+ 24 CLK-

 30

16. HDMI1 (HDMI Connector) 17. FUSE1 (FUSE connector)

PIN SIGNAL PIN SIGNAL

1 DATA2+ 2 GND

3 DATA2- 4 DATA1+

5 GND 6 DATA1-

7 DATA0+ 8 GND

9 DATA0- 10 CLK+

11 GND 12 CLK-

13 NC 14 NC

15 DDCCL 16 DDCDA

17 GND 18 +5V

19 HPD

PIN SIGNAL PIN SIGNAL

1 Power Out 2 Power Out

3 Power IN 4 Power IN

18. PWR1 (Power Input Terminal Block
Connector)

19. LED2

PIN DEFINE

1 Power IN

2 Ignition

3 GND

Green : Status LED

Green: HDD LED.

Yellow: Power ON LED

 31

20. SW4 (RS-422 RX terminator resistor
selection)

21. SW3 (RS-422/485 TX Terminator resistor
selection)

SW4 DIP Switch

For RS-422 RX Terminator resistor

selection)

(Default: all OFF)

SW3 DIP Switch

For RS-422/485 TX Terminator

resistor selection)

(Default: all OFF)

22. SW2 (RS-422,RS-485 function select) 23, 24. SATA2, SATA1 (SATA device connector
#2 and #1)

SW2 DIP Switch

For RS-422,RS-485 Function

select(Default: All OFF For RS-232)

RS-422 setting:

1 OFF
2 ON
3 OFF
4 ON

RS-485 setting:

1 ON
2 ON
3 OFF
4 ON

To connect SATA device:

1.Attach either end of the signal cable

to the SATA connector on motherboard.

Attach the other end to the SATA

device.

2. Attach the SATA power cable to the

SATA device and connect the other end

from the power supply.

 32

25. BT1 (BLUETOOTH connector) 26. GPS1 (GPS connector)

PIN DEFINE

1 NC

2 USB_D-

3 USB_D+

4 GND

5 VCC3

PIN DEFINE

1 NC

2 USB_D-

3 USB_D+

4 GND

5 VCC3

27. SIM1 (SIM CARD Socket) 28. LPC1 (LPC BUS Signal Header for
Port-80 Debug Tools)

SIM Card Holder

Connects to 3.5G Cell phone SIM Card.

Pin SIGNAL

1 33MHz Clock

2 LAD1

3 Reset#

4 LAD0

5 LFRAME#

6 VCC3

7 LAD3

8 GND

9 LAD2

10 GND

29. CF1 (CF CARD Socket)

Supports Compact Flash Card TYPE I/II

 33

Chapter 3 BIOS Settings
This chapter describes the BIOS menu displays and explains how to perform

common tasks needed to get the system up and running. It also gives detailed
explanation of the elements found in each of the BIOS menus. The following
topics are covered:

 Main Setup
 Advanced Chipset Setup
 SuperIO Setup
 Security Setup
 Boot Setup
 Exit Setup

3.1 Main Setup

 Once you enter the Phoenix BIOS™ CMOS Setup Utility, the Main Menu will
appear on the screen. Use the arrow keys to highlight the item and then use the
<Pg Up> <Pg Dn> keys to select the value you want in each item.

 34

Note: Listed at the bottom of the menu are the control keys. If you need any help
with the item fields, you can press the <F1> key, and it will display the relevant
information.

Option Choice Description

System Date N/A
Set the system date. Note that the ‘Day’ automatically

changes when you set the date

System Time N/A Set the system time.

Processor Type N/A This item displays the CPU Type

Processor Speed N/A This item displays the CPU Speed

L2 Cache Ram N/A This item displays the L2 ache memory size

Total Memory N/A This item displays the memory size that used.

System Memory

Speed
N/A This item displays the memory speed.

 35

Memory Mode N/A This item displays the memory mode.

Memory Channel slot

0
N/A This item displays the memory size that used On slot 0.

Memory Channel slot

1
N/A This item displays the memory size that used On slot 0.

BIOS Version N/A This item displays BIOS’s Version

Build Time N/A This item displays the building time of BIOS.

3.2 Advanced Chipset Setup

 36

 37

Option Choice Description

Full Screen Logo

Show

Enabled

Disabled
Displays the full screen logo upon BIOS booting

Quick Boot
Enabled

Disabled

Allows the system to skip certain tests while booting. This

will decrease the time needed to boot the system.

Audio

Auto

Enable

Disable

Control detection of the Azalia device.

Lan 1
Enabled

Disabled
Control the Lan 1 port.

Lan 2
Enabled

Disabled
Control the Lan2 port.

Sata Device
Enabled

Disabled

Enabled E nables onboard SATA controller

Disabled T urn off onboard SATA controller

 38

Interface

Combination

AHCI

IDE
Select SATA mode.

Aggressive Link

Power

Enabled

Disabled

Enabled E nables onboard SATA power pin.

Disabled T urn off onboard SATA power pin.

Serial ATA port 0 N/A Show HDD information.

Serial ATA port 1 N/A Show HDD information.

DVMT Pre-allocation

32MB

64MB

128MB

How much memory you want to point to the graphics
card

DVMT Max

allocation Memory

128MB

256MB

MAX

Points up how much memory to the graphics card

EHCI 1,2
Enabled

Disabled
Control the USB 2.0 functions.

USB Port #0~12

Enable/Disable

Enabled

Disabled
Enable/Disable USB Ports.

 39

3.3 Superio Setup

Option Choice Description

Com_1 4F8/5

Enabled

Disabled
Enable or Disable the com port function.

Com_2 4E8/7
Enabled

Disabled
Enable or Disable the com port function.

CPU Temperature N/A

These read-only fields show the functions of

the hardware thermal sensor by CPU thermal

diode that monitors the chip blocks to ensure

a stable system.

System Temperature N/A Show you the current system temperature.

CPU VCore N/A Show you the voltage of Vcore.

+12V N/A Voltage of 12V on the mother board

 40

+5V N/A Voltage of 5V on the mother board

+3.3V N/A Voltage of 3.3V on the mother board

VBAT N/A Voltage of Battery on the mother board

 41

3.4 Security Setup

Option Choice Description

Supervisor Password

is
N/A

The BIOS attempts to load the operating system from the

devices in the sequence selected in these items.

Set Supervisor

Password

Pressing <Enter> on

this item for

confirmation:

ENTER

PASSWORD:

When a password has been enabled, you will be prompted

to enter your password every time you try to enter Setup.

This prevents unauthorized persons from changing any

part of your system configuration.

Type the password, up to eight characters in length, and

press <Enter>. The password typed now will clear any

previous password from the CMOS memory. You will be

asked to confirm the password. Type the password again

and press <Enter>. You may also press <Esc> to abort the

selection and not enter a password.

To disable a password, just press <Enter> when you are

prompted to enter the password. A message will confirm

that the password will be disabled. Once the password is

disabled, the system will boot and you can enter Setup

freely.

 42

3.5 Boot setup
Choice boot priority.

 43

3.6 Exit Setup

option Choice Description

Exit Saving

Changes

Pressing <Enter> on

this item for

confirmation:

Exit BIOS Setup and Save Changes BIOS Setting.

Exit

Discarding

Changes

Pressing <Enter> on

this item for

confirmation:

Exit BIOS Setup and Without Save Changes BIOS Setting.

 44

Load Setup

Defaults

When you press

<Enter> on this item

you get a confirmation

dialog box with a

message like this:

Press ‘Y’ to load the default values that are factory-set for

optimal-performance system operations.

Discard

Changes

Pressing <Enter> on

this item for

confirmation:

N/A

Save

Changes

Pressing <Enter> on

this item for

confirmation:

Save Changes BIOS Setting but without exit BIOS Setup.

 Appendix

a.Power Sub-System Parameter Setting
Power subsystem parameters can be set by BIOS or Power Management Utility
or Application Program through API. All parameters shall be able to read
through the serial port of platform.

1. Remote Switch:
A. Remote Switch Disabled (Ignition only)
B. Remote Switch Enabled (Ignition + Remote Switch)
C. Default setting: Disable

 45

2. Power On Delay:

A. Range: 8 second to 60 seconds with 1 second increment
B. Default Setting: 8 seconds

3. Soft Off Delay:
A. Range: 0 second to 3600 seconds with 1 second increment
B. Default Setting: 5 seconds

4. Shutdown Delay:

A. Range: 120 seconds to 3600 seconds with 1 second increment
B. Default Setting: 180 seconds

5. Hard Off delay:
A. Range: 0 second to 3600 seconds with 1 second increment
B. Default Setting: 60 seconds

6. Battery Low monitor
A. Enable or disable: If it is disable, the battery low monitor will not

prohibit power on or shut down platform due to battery low.
Customers need to confirm their power supply can support sufficient
power for our system.

B. Default: Disable

7. Battery low delta :
A. Battery low delta is a number in unit of Volt to determine the Battery

low voltage.
B. Battery low voltage = Standard battery voltage (12V or 24V) – Delta.

For example, if delta is 2 Volts for a 12V vehicle, the Battery low
voltage is 10 Volts.

C. Range: 0.5V to 3.0V with 0.5V increment.
Default Setting: 1.5V

8. Area “A” for Power Sub-System Model Name
9. Area “B” for Power Sub-System Firmware Revision
10. Area “C” for Power Sub-System Current Battery Voltage

 46

b. Power Sub-System Setup Manual:

Setup manual can be activate during BIOS POST by pressing a hot key “F4” on
the keyboard. The setup manual is used for power subsystem parameter setting.
The changes will be stored into power subsystem PIC controller after pressing
“F10” or remain unchanged by pressing “ESC” key.

c. Reset Power Sub-System Parameters

When PIC detected the parameter reset pins are shorted or Setup manual
pressing a hot key “F1”, all following parameters will be reset to all their default
setting

1. Remote Switch: Disable
2. Power On Delay: 8 Sec
3. Soft Off Delay: 5 Sec
4. Shutdown delay: 180 Sec
5. Hard Off delay: 60 Sec
6. Battery Low monitor : Disable
7. Battery low delta : 1.5 V

 47

Chapter 4 Function Description

4.1 DC Power input connection

AR-B6100 needs +9~32V to power the board.

4.2 Digital Inputs
There are 4 clamped diode protection digital inputs on GPIO1 connector. You can
read the status of any input through the software API. These digital inputs are
general purpose input. You can define their purpose for any digital input function.
The detailed information please refers to Software Programming Guide for how to
use the API.
Following diagrams state how to connect the digital inputs to devices on the
embedded system.

 48

4.3 Digital Outputs
There are 4 clamped diode protection digital outputs on GPIO1 connector. You
can control the output status of these digital outputs through the software API. The
four digital outputs are capable sink maximum 500 mA current for each channel
and maximum output voltage is 12V. The output reference voltage of device,
please connect to GPIO #VCC12V(Pin15). These digital outputs are general
purpose outputs. The detailed information please refers to Software Programming
Guide for how to use the API.
Following diagrams state how to connect the digital outputs to devices on the
embedded system.

GPIO Pin Define:

PIN SIGNAL PIN SIGNAL

1 GPO0 2 GPO1

3 GPO2 4 GPO3

5 GND 6 GND

7 CAN_H 8 CAN_L

9 GND 10 I-Button

11 GPI4 12 GPI5

13 GPI6 14 GPI7

15 VCC12A

 49

4.4 Watchdog Timer
If you set a watchdog timer, you can use it to reset the system when system hangs
up due to hardware issue. After you set the watchdog timer, the software shall
re-set the timer to re-start a new cycle before it time-out. Please refer to Chapter 6
Software Installation and Programming Guide for how to set the watchdog timer.

4.5 RS-232 Ports

The COM1\COM2\COM3 is connected through a cable (Pin Header). Users
need to plug into RS-232 or RS-422/485 connector. Please refer to SW2, SW3
and SW4 setting. The following diagram is their pin definition and signal.

Pin number RS-232 male
1 DCD
2 TXD
3 RXD
4 DSR
5 GND
6 DTR
7 CTS
8 RTS

9 RI

 50

COM1, COM2, COM3: For RS-232 Function

Pin SIGNAL

1 DSR

2 DCD

3 RTS

4 SIN

5 CTS

6 SOUT

7 RI

8 DTR

9 NC

10 GND

COM2_485: For RS-422, RS-485

Pin SIGNAL

1 NA

2 485_422_TX2+

3 NA

4 485_422_TX2-

5 422_RX2-

6 NA

7 422_RX2+

8 NA

9 422_485_SEL_L

10 GND

 51

4.6 Serial ATA (SATA)

There are 2 SATA 2.5 ports on the AR-B6100. There are also two SATA power
connectors for the SATA hard disks. The SATA power cable is an optional
accessory. If you need a SATA power connector, please contact CarTFT.com
.

4.7 USB
There are six USB 2.0 interfaces on the AR-B6100. Four USB connectors are
located on the edge of the board. The other two USB ports are supported by two 5
pin internal connector. You need a special cable for using these two USB ports
and they are optional accessories.

Note:
1. If remote switch is not connected or loosed, the status LED will be flashing.
2. Please use Intel Graphics AP to adjust resolution clone.

 52

Chapter 5 Driver And Utility
Installation

5.1 Introduction to Driver CD Interface
CarTFT.com provides the a driver CD, which includes the drivers, utilities,

applications and documents. For Windows environment, it can be guided by
the setup program; for Linux environment, the related files can be found at
folder “ARB6100\Linux”.

Once putting the CD into the optical disk drive, it will run automatically. The driver
CD will also detect the MB information to see if they are matched. The following error
messages appear if you get an incorrect driver CD.

It indicates that the board information is not available and the program gets wrong
boid information.

 53

 Driver Page
This is the Driver Installation Page.

 54

 Click the icon, all the drivers will be selected.

 55

 Click the icon, all selected items will be cleared.

 56

 Click the icon to install the selected drivers.(Windows XP 32bit
Driver Installation)

 57

Please click ‘Yes’ to restart the system.

 58

 Click this icon to browse this CD content.

 59

 Utility Page

CarTFT.com provides a test utility. Users can double click the item ‘Test Utility’ on the

‘Utility’ page to launch this utility.

 60

Before launching this utility, users have to install the ‘Acrosser Driver’ in advance.

You can find this driver on the ‘Application’ page. The system may ask for installing
other libraries. You can find the libraries on the ‘Application’ page also.

This is the test utility.

 61

Users can double click the ‘Sample Code’ to open the sample code folder. The
source code of the test utility is in this folder.

 Application Page

 62

 Acrobat Reader 9.2
Double click this item to install the Acrobat Reader program.

 RAID Driver for Windows XP 32bit
Double click this item to open the folder of the Windows XP RAID Driver. Users
need this driver package if they install the Windows XP in the AHCI mode.(You can
reference “Note” in the end of this chapter.)

 Acrosser Driver

Install this driver before launching the Test Utility for the first time.
 Driver for Optional Modules

Double click this item to open the folder. There are drivers for optional modules in
this folder.

 63

 Documents Page

Double click on one of the items to open the manual.

 64

 5.2 Windows 7 32 / 64 bit Driver Installation
Please be noted. Since Windows 7 64 bit edition needs certified digital signing to
load hardware drivers, in order to run our product correctly, the installation program
will automatically enable the test signing feature if it runs under Windows 7 64 bit
environment.

 Installing Drivers
 Put the Driver Disk into the optical disk drive. Then click the ‘Run setup.exe’ to run

the install program.

 65

 The program will appear on the screen. Please click the ‘Select All’ icon.

 66

 Click the ‘Install’ icon to install the drivers.

 Finish the driver installation. Please click ‘Yes’ to restart the system.

 67

Note: Installing Windows XP in the AHCI mode
Due to Windows XP is older operating system, it don’t include AHCI driver.
If you want to install Windows XP operating system in the AHCI mode, please
follow the steps listed below. (reference ‘F6Readme.txt’ from folder of the
WinXP32_RAID Driver)
Double click this item to open the folder of the WinXP32_RAID Driver. Users need
this driver package if they install the Windows XP in the AHCI mode.

 Prepare a USB floppy drive and a floppy disk. Copy all the files in this folder to

the floppy disk.
 In the BIOS setup, enable the AHCI mode of the hard drive.

 68

 Connect the floppy drive to the system before installing the Windows XP
operating system. Make sure the floppy disk is inserted.

 Boot the system with the installation CD. Follow the instructions on the screen.
As soon as the screen shows this information, press ‘F6’.

 When the screen shows this information, press ‘S’.

 69

 When the screen shows a list of available drivers, choose the ‘Mobile Express
Chipset SATA AHCI Controller’.

 When the screen shows this information, press ‘Enter’ to continue installing the

operating system.

 70

Chapter 6 Software Installation and
Programming Guide

6.1 CAN bus

6.1.1 Overview
The CAN bus APIs provide interfaces to CAN bus subsystem. By invoking these

APIs, programmers can implement the applications which have the functions listed
below:
1. Set the BAUD rate.
2. Send the CAN packages over the CAN bus.
3. Receive the CAN packages via the CAN bus hardware interface.
4. Set the CAN package filter to selectively receive CAN packages with specific ID.
5. Set the mask bits to selectively make some filter bits take effect.
6. Full Mode Enable.
7. Full Mode Disable.

In folder ‘ARB6100\Utility\AR-V6100_Source’ on the CD, we provides:
1. API header file.
2. API library in static library format and shared library format.
3. Test utility and its source code.

6.1.2 CAN Message Format
// TYPE DEFINITION
typedef ch ar i 8;
typedef uns igned char u8;
typedef s hort i 16;
typedef uns igned short u1 6;
typedef uns igned long u32;
typedef i nt i 32;

struct CanMsg {

u32 i d;
 u8 i d_type;
 u8 l ength;

 71

u8 da ta[8];
}

To transmit a CAN packet, the programmer has to fill in the fields in the variable of type
CanMsg and pass this CanMsg variable as an argument to invoke the APIs. The fields in
CAN message are described below:
id:
 This field holds the ID information of the CAN packet. In a ‘Standard Data Frame’
CAN packet, the ID field consists of 11 bits of binary digitals. In an ‘Extended Data
Frame’ CAN packet, the ID field consists of 29 bits of binary digitals. That the CAN
packet is a ‘Standard Data Frame’ packet or an ‘Extended Data Frame’ packet is
determined by the ‘id_type’ field in the CanMsg variable.

The ‘id’ field in the CanMsg variable is a 32-bit long space. If a CanMsg variable is
configured as a ‘Standard Data Frame’ CAN packet, the bit[0] ~ bit[10] in the ‘id’ field is
the ID of the CAN packet. The bit[11] ~ bit[31] are ignored when the APIs in the library
processing the CanMsg variable.

 If a CanMsg variable is configured as an ‘Extended Data Frame’ CAN packet, the
bit[0] ~ bit[28] in the ‘id’ field is the ID of the CAN packet. The bit[29] ~ bit[31] are
ignored when the APIs in the library processing the CanMsg variable.

id_type:
 This field identifies that the CAN packet is a ‘Standard Data Frame’ CAN packet or
a ‘Extended Data Frame’ CAN packet:

 struct CanMsg canMsg;
 canMsg.id_type = EXT_ID; / / A ‘Extended Data Frame’ packet
 canMsg.id_type = STD_ID; // A ‘Standard Data Frame’ packet

length:

 72

 This field identifies the number of data bytes in the next field ‘data[8]’ which are

filled with effective data. Because the ‘data’ field is an 8-byte long array, the range of this
field ‘length’ is 0 ~ 8.

data[8]:

This array of data will be filled with effective data.

For example:

 struct CanMsg msg;

 msg.data[0] = 0xa1;
 msg.data[1] = 0xb2;

msg.data[2] = 0xc3;

msg.length = 3;

6.2 GPIO and Watchdog

6.2.1 Overview
This model provides both a GPIO interface and a Watchdog timer. Users can use the

GPIO and Watchdog APIs to configure and to access the GPIO interface and the
Watchdog timer. The GPIO has four input pins and four output pins. The Watchdog timer
can be set to 1~255 seconds. Setting the timer to zero disables the timer. The remaining
seconds of the timer to reboot can be read from the timer.

6.2.2 Installing Device Driver
Before executing the applications which invoke the GPIO or Watchdog APIs, users

should make sure that the Linux device driver or the Windows device driver has been
installed.

On Linux platform, after successfully installing the device driver, a character device
node named “/dev/AcroDev” will be created automatically. The APIs open the device
node “/dev/AcroDev” implicitly so acquiring a file descriptor of “/dev/AcroDev” is not
ncecssary.

On Windows platform, after successfully installing the device driver, there is a device
which shows ‘Acrosser Device’ in the ‘Device Manager’. The APIs on Windows platform

 73

open this device implicitly.

6.3 Power Subsystem

6.3.1 Overview
The Power Subsystem APIs can be used to get and set the configuration of power
subsystem. By invoking the Power Subsystem APIs, the users can:

1. Get the firmware version number of the Power Subsystem.
2. Set all the settings of the Power Subsystem to the default values.
3. Get/Set the status of the remote switch(ENABLE or DISABLE).
4. Get the battery voltage.
5. Get/set the status of the battery monitor (ON or OFF).
6. Get/set the delta value which identifies how much the battery voltage can be lower

than the nominal voltage. When the voltage is lower than the tolerable voltage, the
power subsystem turns off the system.

7. Get/set the Soft Off deley.
8. Get/set the Hard Off delay.
9. Get/set the Power On delay.
10. Get/set the Shutdown delay.

The power subsystem connects to the main system via the COM port. On the Linux
platform, the actual port number to which the Power Subsystem connects is determined
by the Linux. The default supported COM interfaces on Linux are COM1~COM4. Users
must take extra steps to configure Linux kernel in order to support COM ports which do
not fall into the range COM1 ~ COM4. Please refer to Appendix A for more information.
Users don’t need extraordinary setup on Windows platform to support COM ports.

6.4 I-Button Function
In the API library, we provide a set of I-Button functions. Users can use the functions

to:
1. Reset the I-Button.
2. Read data from the I-Button.
3. Write data to the I-Button.

 74

6.5 API List and Descriptions

6.5.1 CAN Bus
1. Syntax:

 i32 getCanFwVer(PicInfo *ver)

Descriptions: This function gets the version information of the CAN Bus firmware.
Parameters: The definition of struct ‘PicInfo’ is:
 struct PicInfo {
 u8 info[12];
 }
This API returns the version information and store the information in the memory
which is pointed at by the pointer ‘ver’.

Return Value: If this function gets the version information successfully, it returns 0,
any other returned value stands for error.

2. Syntax:
 i32 getCanBaudRate(u8 *baud)

Descriptions: This function gets the current setting of the Baud Rate of the CAN Bus.
This function gets an ‘unsigned char’ to represent the Baud Rate. Here is the
table for the Baud Rate:

Unsigned Char Baud Rate
1 10K
2 20K
3 50K
4 100K
5 125K
6 250K
7 500K
8 800K
9 1000K

 75

 Users can use the macros listed below to set the Baud Rate:
 /* Baud Rate */
 #define BAUD_RATE_10K 1
 #define BAUD_RATE_20K 2
 #define BAUD_RATE_50K 3
 #define BAUD_RATE_100K 4
 #define BAUD_RATE_125K 5
 #define BAUD_RATE_250K 6
 #define BAUD_RATE_500K 7
 #define BAUD_RATE_800K 8
 #define BAUD_RATE_1000K 9

 Parameters: This function gets a number which represents the specific Baud Rate

and stores it at the memory which is pointed at by the pointer ‘baud’.

Return Value: If this function gets the baud rate successfully, it returns 0, any other
returned value stands for error.

3. Syntax:

 i32 setCanBaudRate(u8 baud)

Descriptions: This function sets the Baud Rate of the CAN Bus.

Parameters: It takes an ‘unsigned char’ as the parameter and sets the Baud Rate
according to the value stored at the parameter ‘baud’. The correspondence between
the Baud rate and the value to set to the function is the same as the table listed in the
previous API ‘getCanBaudRate()’

Return Value: If this function sets the baud rate successfully, it returns 0, any other
returned value stands for error.

4. Syntax:
i32 sendCanMessage(struct CanMsg *buffer, u8 count)

Description: This function sends out CAN packages over the CAN bus.

Parameters: If there is more than one CAN packet to send, these CAN packages are

 76

stored in an array of type ‘CanMsg’. This function sends out packets in a sequential
fashion. The memory address of the first CAN packet to be sent is pointed at by the
parameter ‘buffer’. The number of CAN packets to be sent is indicated by the
parameter ‘count’.

Return Value: If this function sends the CAN packet successfully, it returns 0, any
other returned value stands for error.

Here is an example:
If the CAN packets in the array ‘canAry[]’ have been initialized. The code listed
below will send out the CAN packets in the ‘canAry[]’ over the CAN bus.

 unsigned int result = 0;

struct CanMsg canAry[30];
 /* …
 Initialize the CAN packages in the canAry[30]
 */
 result = sendCanMessages(canAry, 30);
 if(result != 0)
 fprintf(stderr, “Send CAN package error!\n”);

5. Syntax:

i32 getCanMessage(struct CanMsg *buffer, u8 count)

Description: This function receives CAN packets from the CAN bus subsystem.

Parameters: This function stores received CAN packages sequentially at an array of
type ‘CanMsg’. The number of packages to receive is indicated by the parameter
‘count’.

Return Value: If this function receives the CAN packet successfully, it returns 0, any
other returned value stands for error.

Here is an example:
If the array ‘canAry[]’ of type ‘CanMsg’ has been declared and allocated. The code
listed below will receive 30 CAN packages from the CAN bus subsystem and stores
the packages in the ‘canAry[]’.

 77

 unsigned int result = 0;

struct CanMsg canAry[30];

 result = getCanMessage(canAry, 30);
 if(result != 0)
 fprintf(stderr, “Fail to receive CAN packets!\n”);

6. Syntax:
 i32 getCanMask(struct CanMask *mask)

Description: This function gets the current setting of the acceptance masks. Masks
are used to determine which bits in the ID field of the CAN packet are examined with
the filters. There are two acceptance masks (mask0 and mask1) and six acceptance
filters (filter0 ~ filter5) in the CAN Bus subsystem. Filter0 ~ filter1 are associated
with mask0. Filter2 ~ filter4 are associated with mask1.

Here is the Mask/Filter truth table:

Mask bit
n

Filter bit
n

Message
ID bit n

Accept or reject bit n

0 x x Accept
1 0 0 Accept
1 0 1 Reject
1 1 0 Reject
1 1 1 Accept

 Note: x = don’t care

 Parameters: This parameter ‘mask’ is a pointer to a variable of type ‘CanMask’.
 Users use the field ‘maskId’ to indicate the mask they want and the API put the
 setting of the mask in the ‘mask’ field.

 struct CanMask {
 u8 maskId; // 0 or 1
 u32 mask;
 }
 Return Value: If this function receives the mask setting successfully, it returns 0,
 any other returned value stands for error.

 78

For example:
 struct CanMask a_mask;
 a_mask.maskId = 0; // indicate the mask0
 i32 result;
 result = getCanMask(&a_mask); // The setting of the mask is put at
 // a_mask.mask
 if(result != 0)
 printf(“Fail to get mask!\n”);

7. Syntax:

 i32 setCanMask(struct CanMask mask)

Description: This function sets the bit patterns to the indicated mask. The target mask
is indicated by the ‘maskId’ field in a CanMask variable.

Parameters: This functions takes a variable of type ‘CanMask’. User set the bit
patterns they want to the ‘mask’ field in a ‘CanMask’ variable.

 struct CanMask {
 u8 maskId; // 0 or 1
 u32 mask;
 }
For example:
 struct CanMask varMask;
 i32 result;

 varMask.maskId = 1;
 varMask.mask = 0x12345678;
 result = setCanMask(varMask);

Return Value: If this function sets the mask setting successfully, it returns 0, any
other returned value stands for error.

 79

8. Syntax:
 i32 getCanFilter(struct CanFilter *varFilter)

Description: This function gets the current setting of the acceptance filter. Use the
‘filterId’ field in a ‘CanFilter’ variable to indicate the filter you want and the API puts
the setting of the indicated filter in the ‘filter’ field in the CanFilter variable ‘varFilter’.

Parameters: This function takes a pointer to a ‘CanFilter’ type variable.
For example:
 struct CanFilter varFilter;
 i32 result;

 result = getCanFilter(&varFilter);
 if(result != 0)
 printf(“Fail to get the filter!\n”);

Return Value: If this function gets the filter successfully, it returns 0, any other
returned value stands for error.

9. Syntax:
 i32 setCanFilter(struct CanFilter *varFilter)

Description: This function sets the bit pattern to the filter. By indicating the
‘filterType’ field in the ‘varFilter’ variable, the bit pattern in the ‘filter’ field will be
taken as an ‘Standard ID’ filter or ‘Extended ID’ filter.
 struct CanFilter {
 u8 filterId; // There are six filters so the filterId = 0 ~ 5
 u8 filterType; // filterType = STD_ID or filterType = EXT_ID
 u32 filter;
 }
If a filter is configured as a ‘Standard ID’ filter, only bit18 ~ bit28 in the mask take
effect when filtering the CAN packet.

 80

Parameters: This function takes a pointer to a variable of type ‘CanFilter’ as the
parameter. Users set up the ‘filterId’. There are six filters so the ‘filterId’ could be 0 ~
5. Filter0 and filter1 are associated with mask0. Filter2 ~ filter5 are associated with
mask1.
By setting up ‘filterType’, users indicate the type of the filter. Filter type could be
‘STD_ID’ or ‘EXT_ID’.
Depending on the filter type, the ‘filter’ field in the CanFilter variable could be 0x0 ~
0x7FF (11 bits) when filter type is ‘STD_ID’. If the filter type is ‘EXT_ID’, the
‘filter’ field in the CanFilter variable could be 0x0 ~ 0x1FFFFFFF (29 bits).

For example:
 struct CanFilter varFilter;
 i32 r esult;
 varFilter.filterId = 3;
 varFilter.filterType = STD_ID;
 varFilter.filter = 0x555;

 result = setCanFilter(&varFilter);
 if(result != 0)
 printf(“Fail to set up the filter!\n”);

Return Value: If this function sets the filter successfully, it returns 0, any other
returned value stands for error.

10. Syntax:

Full Mode Enable
 Description: Enable the Function can receive 11bit and 29bit data.
 Parameters: The Function suggestion Use Test mode and debug.

11. Syntax:

Full Mode Disable
 Description: The Function is setting default.
 Parameters: The Function suggestion Use Test mode and debug.

 81

6.5.2 GPIO and Watchdog

6.5.2.1 GPIO
1. Syntax:

 i32 getChLevel(u8 *val)

Description: Get the status of GPIO input pins and output pins, and put the value at
*val.

Parameters:
This function takes a pointer to an unsigned char variable as the parameter.
The bit0 ~ bit3 in the pointed variable ‘*val’ is the status of the output pins. The bit4
~ bit7 in the pointed variable ‘*val’ is the status of the input pins.

For example:
 u8 val;
 i32 result;

result = getChLevel(&val);
if(result != 0)
 printf(“Fail to get GPIO status!\n”);

Return Value: If the function gets the value successfully, it returns 0, any other
returned value stands for error.

1. Syntax:
 i32 setChLevel(u8 val)

Description: Set the status of GPIO Output pins.

Parameters:

This function takes an unsigned char as the parameter. The bit0 ~ bit3 in variable
‘val’ represent the status of the output pins. The bit3 ~ bit7 in the variable ‘val’ are of
no use and can be neglected.

For example:

 82

 u8 val = 0xf;

i32 result;

 result = setChLevel(val);
 if(result != 0)
 printf(“Fail to set GPIO!\n”);

Return Value: If the function sets the values successfully, it returns 0, any other
returned value stands for error.

6.5.2.2 Watchdog
1. Syntax:

u8 getWtdTimer(void)

Description: This function read the value of the watchdog time counter and returns it
to the caller.
Parameters: None.
Return Value: This function returns the value of the time counter and returns it to the
caller as an unsigned character.

2. Syntax:

void setWtdTimer(u8 val)

Description: This function sets the watchdog timer register to the value ‘val’ and
starts to count down. The value could be 0 ~ 255. The unit is second. Setting the timer
register to 0 disables the watchdog function and stops the countdown.
Parameters: The parameter ‘val’ is the value to set to watchdog timer register. The
range is 0 ~ 255.
Return Value: None.

6.5.3 Power Subsystem
1. Syntax:

 i32 getPwrFwVer(struct PicInfo *ver)

Description: This function gets the version information of the firmware of the Power
Subsystem.

 83

Parameters: The definition of struct ‘PicInfo’ is:
 struct PicInfo {
 u8 info[12];
 }
This API returns the version information and store the information in the memory
which is pointed at by the pointer ‘ver’.

2. Syntax:
 i32 setPicDefault(void)

Description: The function restores the Power Subsystem to the default values. After
calling this API, the items listed below are restored to its default value:

 Remote Switch Default: Disabled
 Battery Monitor Default: Disabled
 Battery Voltage Delta Value Default: 1.5V
 System Soft Off Delay Default: 5 seconds
 System Hard Off Delay Default: 1 minute
 System Power On Delay Default: 8 seconds
 OS Shutdown Delay Default: 3 minutes

Parameters: None.

Return Value: If this function works successfully, the function will return 0, any
other value standards for error.

3. Syntax:
 i32 getRemoteSwitch(u8 *val)

Description: The function gets the status of the Remote Switch.

Parameters: This function takes a pointer to an unsigned char variable as the parameter.
After calling this function, the status of the Remote Switch will be put at the memory
which is pointed by the parameter ‘val’. If the Remote Switch is enabled, ‘*val’ is 0x5A.

 84

If the Remote Switch is disabled, the ‘*val’ is 0xA5. Users can use the macros
‘ENABLED’ (0x5A) and ‘DISABLED’(0xA5) to test the status value ‘*val’.

For example:
 u8 val;
 i32 result;

 result = getRemoteSwitch(&val);
 if(result == 0) {
 if(val == ENABLED)

 printf(“Remote Switch is enabled.\n”);
 else if(val == DISABLED)

 printf(“Remote Switch is disabled.\n”);
 }

Return Value: If this function works successfully, it returns 0, any other value standards
for error.

4. Syntax:

 i32 setRemoteSwitch(u8 val)

Descriptions: The function sets the status of the Remote Switch.

Parameters: This function takes an unsigned char as the parameter. The value of this
parameter can be ‘ENABLED’ (0x5A) or ‘DISABLED’(0xA5).

Return Value: If this function works successfully, it returns 0, any other value
standards for error.

5. Syntax:

 i32 getBattValt(float *vol)

Description: This function gets the battery voltage ant put it in the memory which is
pointed at by the pointer ‘vol’.

 85

Parameters: This function takes a pointer to a ‘float’ variable as the parameter. The
reading of the battery voltage is put at the memory which is pointed at by the
parameter ‘vol’.

Return Value: If this function works successfully, it returns 0, any other value
standards for error.

6. Syntax:
 i32 getBattMonitor(u8 *val)
Description: The function gets the status of the Battery Monitor.

Parameters: This function takes a pointer to an unsigned char variable as the
parameter. After calling this function, the status of the Battery Monitor will be put at
the memory which is pointed by the parameter ‘val’. If the Battery Monitor is
enabled, ‘*val’ is 0x5A. If the Battery Monitor is disabled, the ‘*val’ is 0xA5. Users
can use the macros ‘ENABLED’ (0x5A) and

‘DISABLED’(0xA5) to test the status value ‘*val’.

 Return Value: If this function works successfully, it returns 0, any other value
standards for error.

7. Syntax:

 i32 setBattMonitor(u8 val)

Description: The function sets the status of the Battery Monitor.

Parameters: This function takes an unsigned char as the parameter. The value of this
parameter can be ‘ENABLED’ (0x5A) or ‘DISABLED’(0xA5).

Return Value: If this function works successfully, it returns 0, any other value
standards for error.

8. Syntax:
 i32 getBattDelta(float *val)

 86

Description: This function gets the delta value. The delta value is the maximum
voltage deviation of the power from its nominal voltage. If the function of Battery
Monitor is ON, the Power Subsystem shuts the system down when the voltage
deviation of the power is larger than the delta value.

Parameters: This function takes a pointer to a float variable as the parameter. The
delta value will be put at the memory which is pointed by the parameter ‘val’.

Return Value: If this function works successfully, it returns 0, any other value
standards for error.

9. Syntax:
 i32 setBattDelta(float val)

Description: This function sets the voltage delta value. The range is 0.5V ~ 3.0V. The
granularity is 0.5V.

Parameters: This function takes a float variable as the parameter.

Return Value: If this function works successfully, it returns 0, any other value
standards for error.

10. Syntax:
 i32 setSoftOffDelay(u32 setTime)

Description: The Soft Off Delay is the interval between that the system receives a
power off signal and that the system generates a power off signal. This function sets
up the interval in seconds.
Parameters: The parameter is of the type of unsigned long. The value of the
parameter ranges from 3~3600. The unit of the value of the parameter is seconds.

Return Value: If this function works successfully, it returns 0, any other value stands
for error.

11. Syntax:
i32 setHardOffDelay(u32 setTime)

 87

Description: The Hard Off Delay is the interval between that the system is off and
that the power 5VSB is off. This functions set up the interval in seconds.
Parameters: The parameter is of the type of unsigned long. The value of the
parameter ranges from 3~3600. The unit of the value of the parameter is seconds.
.
Return Value: If the function works successfully, it returns 0, any other value stands
for error.

12. Syntax:
i32 getSoftOffDelay(u32 *Time)

Description: The Soft Off Delay is the interval between that the system receives a
power off signal and that the system generates a power off signal. This function gets
the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable.
The returned value is stored at this variable. The unit of the returned value is in
seconds.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

13. Syntax:

i32 getHardOffDelay(u32 *Time)

Description: The Hard Off Delay is the interval between that the system is off and
that the power 5VSB is off. This function gets the interval.

Parameters: The parameter is a pointer which points to an unsigned long variable.
The returned value is stored at this variable. The unit of the returned value is in
seconds.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

 88

14. Syntax:
 i32 getPowerOnDelay(u32 *val)

Description: This function gets the Power On delay.

Parameters: This function takes a pointer to an unsigned long variable as the
parameter. The delay time will be put at the memory which is pointed by the ‘val’.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

15. Syntax:

 i32 setPowerOnDelay(u32 val)

Description: This function sets the Power On delay.

Parameters: This function takes an unsigned long variable as the parameter. The
range of the Power On delay is 8 ~ 60 seconds.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

16. Syntax:

 i32 getShutdownDelay(u32 *val)

Description: This function gets the Shutdown delay.
Parameters: This function takes a pointer to an unsigned long variable as the
parameter. The delay time will be put at the memory which is pointed by the
parameter ‘val’.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

17. Syntax:
 i32 setShutdownDelay(u32 val)

Description: This function sets the Shutdown delay.

 89

Parameters: This function takes an unsigned long variable as the parameter. The
range of the delay is 120 ~ 3600 seconds.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

6.5.4 I-Button
1. Syntax:

 i32 resetIbutt(void)

Description: This function resets the I-Button.

Parameters: None.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

2. Syntax:
 i32 readIbutt(u8 *data)

Description: This function reads data from the I-Button.

Parameters: This function takes a pointer to an unsigned char variable. The data to be
read from the I-Button is put at the memory which is pointed by the parameter ‘data’.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

3. Syntax:
 i32 writeIbutt(u8 data)

Description: This function writes command to the I-Button.

Parameters: This function takes an unsigned char variable as the parameter. The

 90

command to be written to the I-Button is the value of the parameter ‘data’.

Return Value: If this function works successfully, the function returns 0, any other
value stands for error.

Appendix A
Users have to modify the boot loader configuration to support COM6. Take the grub

configuration file as an example. Add ‘8250.nr_uarts=XX noirqdebug’ at the setting of
kernel. Here, XX represents the number of COM ports the system will support. Because
the power subsystem connects to main system via COM6, the XX must be greater or
equal to 6.

1. Modify the grub.conf.

[root@linux ~]# vi /boot/grub/grub.conf
default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Fedora Core (2.6.27.5.117.FC10)
root (hd0,0)
kernel /vmlinuz-2.6.27.5.117.FC10 ro root=/dev/hda2 rhgb quiet
8250.nr_uarts=6 noirqdebug
initrd /initrd-2.6.27.5.117.FC10.img

3. List the status of the COM ports in the system.

setserial -g /dev/ttyS*
/dev/ttyS0, UART: 16550A, Port: 0x03f8, IRQ: 4
/dev/ttyS1, UART: 16550A, Port: 0x02f8, IRQ: 3
/dev/ttyS2, UART: 16550A, Port: 0x03e8, IRQ: 11
/dev/ttyS3, UART: 16550A, Port: 0x02e8, IRQ: 10

 91

/dev/ttyS4, UART: 16550A, Port: 0x04f8, IRQ: 11
/dev/ttyS5, UART: 16550A, Port: 0x04e8, IRQ: 10

The node ‘/dev/ttyS5’ corresponds to COM6. The IO port is 0x4e8, IRQ 10.

	Chapter 1 System Introduction
	1.1 Specifications
	1.2 Packing List
	1.3 Features
	1.4 System Dissection
	1.4.1 Dimensions
	1.4.2 I/O Panel
	FRONT IO & PRINT

	Chapter 2 Procedures of Assembly/Disassembly
	2.1 2.5”HDD Installation
	2.1.1 Unfasten the screw of chassis.
	2.1.2 Open the bracket.

	2.2 CF Card Installation
	2.3 SIM Card Installation
	2.4 Antenna Installation

	Unscrew
	Chapter 1 Introduction
	1.1 Specifications
	1.2 Package Contents
	1.3 Block Diagram

	Chapter 2 H/W Information
	2.1 Mainboard illustration(Top Side)
	MINIPCIE1
	rPGA988B CPU Socket
	DIMM1
	MINIPCIE2
	DIMM2
	Intel HM65 PCH
	RTC1
	2.2 Locations of IO ports & Jumper settings definition
	Chapter 3 BIOS Settings
	3.1 Main Setup
	3.2 Advanced Chipset Setup
	3.3 Superio Setup
	3.4 Security Setup
	3.5 Boot setup
	3.6 Exit Setup

	System Date
	System Time
	Processor Type
	Processor Speed
	L2 Cache Ram
	Total Memory
	System Memory Speed
	Memory Mode
	Memory Channel slot 0
	Memory Channel slot 1
	BIOS Version
	Build Time
	Full Screen Logo Show
	Quick Boot
	Audio
	Lan 1
	Lan 2
	Sata Device
	Interface Combination
	Aggressive Link Power
	Serial ATA port 0
	Serial ATA port 1
	DVMT Pre-allocation
	DVMT Max allocation Memory
	EHCI 1,2
	USB Port #0~12 Enable/Disable
	Com_1 4F8/5
	Com_2 4E8/7
	CPU Temperature
	System Temperature
	CPU VCore
	+12V
	+5V
	+3.3V
	VBAT
	Supervisor Password is
	Set Supervisor Password
	Exit Saving Changes
	Exit Discarding Changes
	Load Setup Defaults
	Discard Changes
	Save Changes
	Chapter 4 Function Description
	4.1 DC Power input connection
	4.2 Digital Inputs
	4.3 Digital Outputs
	4.4 Watchdog Timer
	4.5 RS-232 Ports
	4.6 Serial ATA (SATA)
	4.7 USB

	Chapter 5 Driver And Utility Installation
	5.1 Introduction to Driver CD Interface
	Driver Page
	Utility Page
	Application Page
	Documents Page

	5.2 Windows 7 32 / 64 bit Driver Installation
	Installing Drivers

	Chapter 6 Software Installation and Programming Guide
	6.1 CAN bus
	6.1.1 Overview
	6.1.2 CAN Message Format

	6.2 GPIO and Watchdog
	6.2.1 Overview
	6.2.2 Installing Device Driver

	6.3 Power Subsystem
	6.3.1 Overview

	6.4 I-Button Function

	6.5 API List and Descriptions
	6.5.1 CAN Bus
	6.5.2 GPIO and Watchdog
	6.5.2.1 GPIO
	6.5.2.2 Watchdog

	6.5.3 Power Subsystem
	6.5.4 I-Button

	Appendix A

